Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.575
Filtrar
1.
Sci Total Environ ; 926: 171945, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531456

RESUMO

Global climate change involves various aspects of climate, including precipitation changes and declining surface wind speeds, but studies investigating biological responses have often focused on the impacts of rising temperatures. Additionally, related long-term studies on bird reproduction tend to concentrate on breeding onset, even though other aspects of breeding could also be sensitive to the diverse weather aspects. This study aimed to explore how multiple aspects of breeding (breeding onset, hatching delay, breeding season length, clutch size, fledgling number) were associated with different weather components. We used an almost four-decade-long dataset to investigate the various aspects of breeding parameters of a collared flycatcher (Ficedula albicollis) population in the Carpathian Basin. Analyses revealed some considerable associations, for example, breeding seasons lengthened with the amount of daily precipitation, and clutch size increased with the number of cool days. Parallel and opposing changes in the correlated pairs of breeding and weather parameters were also observed. The phenological mismatch between prey availability and breeding time slightly increased, and fledgling number strongly decreased with increasing mistiming. Our results highlighted the intricate interplay between climate change and the reproductive patterns of migratory birds, emphasizing the need for a holistic approach. The results also underscored the potential threats posed by climate change to bird populations and the importance of adaptive responses to changing environmental conditions.


Assuntos
Passeriformes , Aves Canoras , Animais , Aves Canoras/fisiologia , Passeriformes/fisiologia , Tempo (Meteorologia) , Estações do Ano , Mudança Climática , Reprodução , Migração Animal/fisiologia
2.
Anim Cogn ; 27(1): 19, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429547

RESUMO

Prey species commonly assess predation risk based on acoustic signals, such as predator vocalizations or heterospecific alarm calls. The resulting risk-sensitive decision-making affects not only the behavior and life-history of individual prey, but also has far-reaching ecological consequences for population, community, and ecosystem dynamics. Although auditory risk recognition is ubiquitous in animals, it remains unclear how individuals gain the ability to recognize specific sounds as cues of a threat. Here, it has been shown that free-living birds (Wood Warblers Phylloscopus sibilatrix) can learn to recognize unfamiliar, complex sounds (samples of punk rock songs) as cues of a threat from conspecifics holding adjacent territories during the spring breeding season. In a playback experiment, Wood Warblers initially ignored the unfamiliar sounds, but after repeatedly hearing that these sounds trigger alarm calling reaction of neighbors, most individuals showed an anti-predator response to them. Moreover, once learned soon after nestlings hatching, the anti-predator response of parents toward previously unfamiliar sounds was then retained over the entire nestlings rearing period. These results demonstrate that social learning via the association of unfamiliar sounds with known alarm signals enables the spread of anti-predator behavior across territory borders and provides a mechanism explaining the widespread abilities of animals to assess predation risk based on acoustic cues.


Assuntos
Passeriformes , Aprendizado Social , Humanos , Animais , Ecossistema , Vocalização Animal/fisiologia , Aprendizagem , Passeriformes/fisiologia , Comportamento Predatório
3.
Horm Behav ; 160: 105491, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340412

RESUMO

Trees release Herbivore-Induced Plant Volatiles (HIPVs) into the air in response to damage inflicted by insects. It is known that songbirds use those compounds to locate their prey, but more recently the idea emerged that songbirds could also use those odours as cues in their reproductive decisions, as early spring HIPVs may contain information about the seasonal timing and abundance of insects. We exposed pre-breeding great tits (Parus major) to the odours of caterpillar-infested trees under controlled conditions, and monitored reproduction (timing of egg laying, number of eggs, egg size) and two of its main hormonal drivers (testosterone and 17ß-estradiol in males and females, respectively). We found that females exposed to HIPVs did not advance their laying dates, nor laid larger clutches, or larger eggs compared to control females. 17ß-estradiol concentrations in females were also similar between experimental and control birds. However, males exposed to HIPVs had higher testosterone concentrations during the egg-laying period. Our study supports the hypothesis that insectivorous songbirds are able to detect minute amounts of plant odours. The sole manipulation of plant scents was not sufficient to lure females into a higher reproductive investment, but males increased their reproductive effort in response to a novel source of information for seasonal breeding birds.


Assuntos
Passeriformes , Aves Canoras , Feminino , Animais , Masculino , Testosterona , Árvores , Odorantes , Melhoramento Vegetal , Passeriformes/fisiologia , Aves Canoras/fisiologia , Reprodução/fisiologia , Insetos , Estradiol
4.
J Therm Biol ; 120: 103792, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403496

RESUMO

Small birds and mammals face similar energetic challenges, yet use of torpor to conserve energy while resting is considered less common among birds, especially within the most specious order Passeriformes. We conducted the first study to record the natural thermoregulatory physiology of any species from the family Hirundinidae, which we predicted would use torpor because of their specialised foraging by aerial pursuit of flying insects, that are less active during cold or windy weather. We used temperature telemetry on wild-living welcome swallows (Hirundo neoxena, 13 to 17 g) and found that skin temperature declined during nightly resting by an average by 5 °C, from daytime minima of 41.0 ± 0.8 °C to nightly minima of 36.3 ± 0.8 °C, and by a maximum of 8 °C to a minimum recorded skin temperature of 32.0 °C. The extent of reduction in skin temperature was greater on cold nights and following windy daytime (foraging) periods. Further, we found that transmitters glued directly to the skin between feather tracts (i.e., an apterium) provided a less variable and probably also more accurate reflection of body temperature than transmitters applied over closely trimmed feathers. A moderate decrease in skin temperature, equivalent to shallow torpor, would provide energy savings during rest. Yet, deeper torpor was not observed, despite a period of extreme rainfall that presumedly decreased foraging success. Further studies are needed to understand the resting thermoregulatory energetics of swallows under different environmental conditions. We advocate the importance of measuring thermal biology in wild-living birds to increase our knowledge of the physiology and ecological importance of torpor among passerine birds.


Assuntos
Passeriformes , Andorinhas , Torpor , Animais , Temperatura Corporal , Regulação da Temperatura Corporal/fisiologia , Torpor/fisiologia , Temperatura , Passeriformes/fisiologia , Metabolismo Energético/fisiologia , Mamíferos
5.
J Exp Zool A Ecol Integr Physiol ; 341(4): 364-376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38327263

RESUMO

Artificial light at night (ALAN) widely affects wildlife by blurring light-dark differences, including transitions such as sunrise and sunset, thereby affecting regulation of diel rhythms. As a result, activity onsets in many wild diurnal songbirds advance under ALAN. From chronobiological studies, it is known that the direction and strength of the response to light depends on when during the night exposure takes place. However, these experiments are mostly done under continuous light conditions, when animals have free-running rhythms. It remains unclear whether phase-dependence also holds in entrained, wild songbirds; i.e., does the effect of ALAN on activity patterns differ between exposure in the morning compared to the evening? This information is essential to assess the effects of mitigation measures by limiting ALAN to selected times of the night. We exposed incubating great tits (Parus major) inside the nest-box to 4 h of dim light, of which 1 h overlapped with dawn before sunrise or dusk after sunset. We found a small advancing effect of morning-light on activity onset and of evening-light on offset compared to dark controls but not vice versa. Breeding success and chick condition were unaffected by the light treatments. However, light-treated females had lower weights 9-18 days after the end of the treatment compared to the controls, independent of whether ALAN occurred in the morning or the evening, indicating possible costs of ALAN. Despite the weak behavioral response, ALAN might have affected the females' circadian clock or physiology resulting in lower body condition.


Assuntos
Passeriformes , Aves Canoras , Feminino , Animais , Luz , Passeriformes/fisiologia , Aves Canoras/fisiologia , Animais Selvagens , Comportamento Animal/fisiologia
6.
J Exp Zool A Ecol Integr Physiol ; 341(4): 410-420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369854

RESUMO

Understanding the potential limits placed on organisms by their ecophysiology is crucial for predicting their responses to varying environmental conditions. A main hypothesis for explaining avian thermoregulatory mechanisms is the aerobic capacity model, which posits a positive correlation between basal (basal metabolic rate [BMR]) and summit (Msum) metabolism. Most evidence for this hypothesis, however, comes from interspecific comparisons, and the ecophysiological underpinnings of avian thermoregulatory capacities hence remain controversial. Indeed, studies have traditionally relied on between-species comparisons, although, recently, there has been a growing recognition of the importance of intraspecific variation in ecophysiological responses. Therefore, here, we focused on great tits (Parus major), measuring BMR and Msum during winter in two populations from two different climates: maritime-temperate (Gontrode, Belgium) and continental (Zvenigorod, Russia). We tested for the presence of intraspecific geographical variation in metabolic rates and assessed the predictions following the aerobic capacity model. We found that birds from the maritime-temperate climate (Gontrode) showed higher BMR, whereas conversely, great tits from Zvenigorod showed higher levels of Msum. Within each population, our data did not fully support the aerobic capacity model's predictions. We argued that the decoupling of BMR and Msum observed may be caused by different selective forces acting on these metabolic rates, with birds from the continental-climate Zvenigorod population facing the need to conserve energy for surviving long winter nights (by keeping their BMR at low levels) while simultaneously being able to generate more heat (i.e., a high Msum) to withstand cold spells.


Assuntos
Metabolismo Energético , Passeriformes , Animais , Metabolismo Energético/fisiologia , Passeriformes/fisiologia , Metabolismo Basal/fisiologia , Estações do Ano , Clima
7.
J Comp Physiol B ; 194(1): 1-6, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38296861

RESUMO

Migrating birds are often exposed to variable environments and face a multitude of stress exposures along their long-distance flights. During stopover refueling, migratory birds must balance the need to accumulate energy reserves to continue their migration with the need to respond to environmental and physiological stressors. We examined the gene expression patterns of different Heat Shock Proteins (HSPs) in migrating birds during stopover at different body condition states (lean vs. fat), to provide some first insights on the role of HSPs in bird migration and explore the concept of a trade-off between refueling and stress response. Our results showed upregulation of HSP expression at release that could be associated with muscle growth and increased cholesterol and lipid synthesis needed for birds to fuel their upcoming migration. On the other hand, during capture, upregulation of HSP5 could be attributed to physiological recovery from the non-stop endurance flight when crossing the Sahara Desert-Mediterranean Sea ecological barrier. All birds significantly increased their fuel loads up to 48% of lean body mass and we provide evidence for muscle rebuilding during stopover as flight muscle mass increased by 10%, highlighting the fact that stopover sites can play a major role in the physiological recovery of migrants.


Assuntos
Migração Animal , Passeriformes , Animais , Migração Animal/fisiologia , Composição Corporal , Resposta ao Choque Térmico/genética , Passeriformes/fisiologia
8.
Biol Lett ; 20(1): 20230410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228188

RESUMO

Many vertebrates eavesdrop on alarm calls of other species, as well as responding to their own species' calls, but eavesdropping on heterospecific alarm calls might be harder than conspecific reception when environmental conditions make perception or recognition of calls difficult. This could occur because individuals lack hearing specializations for heterospecific calls, have less familiarity with them, or require more details of call structure to identify calls they have learned to recognize. We used a field playback experiment to provide a direct test of whether noise, as an environmental perceptual challenge, reduces response to heterospecific compared to conspecific alarm calls. We broadcast superb fairy-wren (Malurus cyaneus) and white-browed scrubwren (Sericornis frontalis) flee alarm calls to each species with or without simultaneous broadcast of ambient noise. Using two species allows isolation of the challenge of heterospecific eavesdropping independently of any effect of call structure on acoustic masking. As predicted, birds were less likely to flee to heterospecific than conspecific alarm calls during noise. We conclude that eavesdropping was harder in noise, which means that noise could disrupt information on danger in natural eavesdropping webs and so compromise survival. This is particularly significant in a world with increasing anthropogenic noise.


Assuntos
Passeriformes , Aves Canoras , Humanos , Animais , Vocalização Animal/fisiologia , Ruído , Aves Canoras/fisiologia , Passeriformes/fisiologia , Aprendizagem
9.
Sci Total Environ ; 912: 169111, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070557

RESUMO

Global warming is rapidly changing the phenology, distribution, behaviour and demography of wild animal populations. Recent studies in wild animals have shown that high temperatures can induce short-term cognitive impairment, and captive studies have demonstrated that heat exposure during early development can lead to long-term cognitive impairment. Given that cognition underpins behavioural flexibility and can be directly linked to fitness, understanding how high temperatures during early life might impact adult cognitive performance in wild animals is a critical next step to predict wildlife responses to climate change. Here, we investigated the relationship between temperatures experienced during development, adult cognitive performance, and reproductive success in wild southern pied babblers (Turdoides bicolor). We found that higher mean daily maximum temperatures during nestling development led to long-term cognitive impairment in associative learning performance, but not reversal learning performance. Additionally, a higher number of hot days (exceeding 35.5 °C, temperature threshold at which foraging efficiency and offspring provisioning decline) during post-fledging care led to reduced reproductive success in adulthood. We did not find evidence that low reproductive success was linked to impaired associative learning performance: associative learning performance was not related to reproductive success. In contrast, reversal learning performance was negatively related to reproductive success in breeding adults. This suggests that reproduction can carry a cost in terms of reduced performance in cognitively demanding tasks, confirming previous evidence in this species. Taken together, these findings indicate that naturally occurring high temperatures during early development have long-term negative effects on cognition and reproductive success in wild animals. Compounding effects of high temperatures on current nestling mortality and on the long-term cognitive and reproductive performance of survivors are highly concerning given ongoing global warming.


Assuntos
Animais Selvagens , Passeriformes , Animais , Temperatura , Passeriformes/fisiologia , Reprodução , Cognição
10.
PLoS One ; 18(12): e0295910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38128009

RESUMO

Carolina chickadees (Poecile carolinensis) and tufted titmice (Baeolophus bicolor) regularly form flocks with multiple species through the winter months, including white-breasted nuthatches (Sitta carolinensis). Earlier studies found that behavior of both chickadees and titmice was sensitive to mixed-species flock composition. Little is known about the influence of background noise level and vegetation density on the antipredator behaviors of individuals within these flocks, however. We tested for the effects of vegetation density, traffic noise, and flock composition (conspecific number, flock diversity, and flock size) on antipredator behavioral responses following an alarm call playback (Study 1) and an owl model presentation (Study 2) at feeders. We recorded background traffic noise and performed lidar scans to quantify vegetation density at each site. After a feeder had been stocked with seed and a flock was present, we recorded calls produced, and we identified flock composition metrics. We coded seed-taking latency, call latency, mob latency, and mob duration following the respective stimulus presentation and tested for effects of flock composition metrics, vegetation density, and background noise on these responses. For the alarm call playback study, flock composition drove behaviors in chickadees and titmice, and vegetation density drove behaviors in chickadees and nuthatches. For the owl model study, conspecific number predicted behavior in chickadees, and mob duration was predicted by nuthatch number. The results reveal individual sensitivity to group composition in anti-predatory and foraging behavior in simulated risky contexts. Additionally, our data suggest that the modality of perceived simulated risk (acoustic vs. visual) and the density of vegetation influence behavior in these groups.


Assuntos
Passeriformes , Aves Canoras , Humanos , Animais , Aves Canoras/fisiologia , Passeriformes/fisiologia , Comportamento Predatório , Acústica , Vocalização Animal , Comportamento Social
11.
Sci Rep ; 13(1): 18770, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907494

RESUMO

Plumage color has traditionally been regarded as a static ornamental trait, but evidence is accumulating for significant color changes without molt that typically reduce the conspicuousness of ornamentation. In some species, the social partner seems to increase its reproductive investment if the color trait is experimentally enhanced, suggesting that color change could act as a signal. However, the information content of this signal is so far unclear. For example, birds in poor condition or making greater effort may deteriorate more severely. We used brood size manipulations to alter the reproductive effort of male and female collared flycatchers Ficedula albicollis. Both sexes showed less severe decline in some reflectance attribute of their white breast when their brood was experimentally reduced. In each sex, greater deterioration of the reflectance trait affected by the manipulation was accompanied by increased feeding rate by the partner. These feeding patterns do not prove, but are consistent with, a compensatory response by the partner to induced degradation. The manipulation effects on color change we detected confirm for the first time that plumage color deterioration can indicate current reproductive effort, thereby providing a potential fitness advantage to social partners that react to such deterioration.


Assuntos
Passeriformes , Aves Canoras , Animais , Feminino , Masculino , Aves Canoras/fisiologia , Passeriformes/fisiologia , Reprodução/fisiologia , Fenótipo , Cor , Plumas/fisiologia , Pigmentação/fisiologia
12.
J Therm Biol ; 118: 103748, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984051

RESUMO

Understanding how birds annually allocate energy to cope with changing environmental conditions and physiological states is a crucial question in avian ecology. There are several hypotheses to explain species' energy allocation. One prominent hypothesis suggests higher energy expenditure in winter due to increased thermoregulatory costs. The "reallocation" hypothesis suggests no net difference in seasonal energy requirements, while the "increased demand" hypothesis predicts higher energy requirements during the breeding season. Birds are expected to adjust their mass and/or metabolic intensity in ways that are consistent with their energy requirements. Here, we look for metabolic signatures of seasonal variation in energy requirements of a resident passerine of a temperate-zone (great tit, Parus major). To do so, we measured whole-body and mass-independent basal (BMR), summit (Msum), and field (FMR) metabolic rates during late winter and during breeding in Belgian great tits. During the breeding season, birds had on average 10% higher whole-body BMR and FMR compared to winter, while their Msum decreased by 7% from winter to breeding. Mass-independent metabolic rates showed a 10% increase in BMR and a 7% decrease in Msum from winter to breeding. Whole-body BMR was correlated with Msum, but this relationship did not hold for mass-independent metabolic rates. The modest seasonal change we observed suggests that great tits in our temperature study area maintain a largely stable energy budget throughout the year, which appears mostly consistent with the reallocation hypothesis.


Assuntos
Clima , Passeriformes , Animais , Estações do Ano , Metabolismo Energético/fisiologia , Passeriformes/fisiologia , Temperatura , Metabolismo Basal/fisiologia
13.
Biol Lett ; 19(10): 20230332, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788715

RESUMO

Alarm signals have evolved to communicate pertinent threats to conspecifics, but heterospecifics may also use alarm calls to obtain social information. In birds, mixed-species flocks are often structured around focal sentinel species, which produce reliable alarm calls that inform eavesdropping heterospecifics about predation risk. Prior research has shown that Neotropical species innately recognize the alarm calls of a Nearctic sentinel species, but it remains unclear how generalizable or consistent such innate signal recognition of alarm-calling species is. We tested for the responses to the alarm calls of a Neotropical sentinel forest bird species, the dusky-throated antshrike (Thamnomanes ardesiacus), by naive resident temperate forest birds across three continents during the winter season. At all three sites, we found that approaches to the Neotropical antshrike alarm calls were similarly frequent to the alarm calls of a local parid sentinel species (positive control), while approaches to the antshrike's songs and to non-threatening columbid calls (negative controls) occurred significantly less often. Although we only tested one sentinel species, our findings indicate that temperate forest birds can recognize and adaptively respond globally to a foreign and unfamiliar tropical alarm call, and suggest that some avian alarm calls transcend phylogenetic histories and individual ecological experiences.


Assuntos
Passeriformes , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Filogenia , Florestas , Passeriformes/fisiologia , Comportamento Predatório
14.
J Anim Ecol ; 92(10): 1924-1936, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574652

RESUMO

Urbanisation is accelerating across the globe, transforming landscapes, presenting organisms with novel challenges, shaping phenotypes and impacting fitness. Urban individuals are claimed to have duller carotenoid-based colouration, compared to their non-urban counterparts, the so-called 'urban dullness' phenomenon. However, at the intraspecific level, this generalisation is surprisingly inconsistent and often based on comparisons of single urban/non-urban populations or studies from a limited geographical area. Here, we combine correlational, experimental and meta-analytical data on a common songbird, the great tit Parus major, to investigate carotenoid-based plumage colouration in urban and forest populations across Europe. We find that, as predicted, urban individuals are paler than forest individuals, although there are large population-specific differences in the magnitude of the urban-forest contrast in colouration. Using one focal region (Malmö, Sweden), we reveal population-specific processes behind plumage colouration differences, which are unlikely to be the result of genetic or early-life conditions, but instead a consequence of environmental factors acting after fledging. Finally, our meta-analysis indicates that the urban dullness phenomenon is well established in the literature, for great tits, with consistent changes in carotenoid-based plumage traits, particularly carotenoid chroma, in response to anthropogenic disturbances. Overall, our results provide evidence for uniformity in the 'urban dullness' phenomenon but also highlight that the magnitude of the effect on colouration depends on local urban characteristics. Future long-term replicated studies, covering a wider range of species and feeding guilds, will be essential to further our understanding of the eco-evolutionary implications of this phenomenon.


Assuntos
Passeriformes , Aves Canoras , Humanos , Animais , Urbanização , Pigmentação , Carotenoides , Passeriformes/fisiologia , Europa (Continente) , Plumas/fisiologia
15.
Mol Ecol ; 32(17): 4911-4920, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395529

RESUMO

Heat waves are predicted to be detrimental for organismal physiology with costs for survival that could be reflected in markers of biological state such as telomeres. Changes in early life telomere dynamics driven by thermal stress are of particular interest during the early post-natal stages of altricial birds because nestlings quickly shift from being ectothermic to endothermic after hatching. Telomeres of ectothermic and endothermic organisms respond differently to environmental temperature, but few investigations within species that transition from ectothermy to endothermy are available. Also, ambient temperature influences parental brooding behaviour, which will alter the temperature experienced by offspring and thereby, potentially, their telomeres. We exposed zebra finch nestlings to experimental heat waves and compared their telomere dynamics to that of a control group at 5, 12 and 80 days of age that encapsulate the transition from the ectothermic to the endothermic thermoregulatory stage; we also recorded parental brooding, offspring sex, mass, growth rates, brood size and hatch order. Nestling mass showed an inverse relationship with telomere length, and nestlings exposed to heat waves showed lower telomere attrition during their first 12 days of life (ectothermic stage) compared to controls. Additionally, parents of heated broods reduced the time they spent brooding offspring (at 5 days old) compared to controls. Our results indicate that the effect of heat waves on telomere dynamics likely varies depending on age and thermoregulatory stage of the offspring in combination with parental brooding behaviour during growth.


Assuntos
Tentilhões , Passeriformes , Animais , Temperatura Alta , Passeriformes/fisiologia , Regulação da Temperatura Corporal , Telômero/genética , Tentilhões/genética
16.
Zoolog Sci ; 40(4): 273-277, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37522597

RESUMO

While mobbing, individuals utter distinctive calls and perform visual threatening displays. Like any other antipredatory strategies, it involves some costs (time, energy, injuries, and even death). Therefore, mobbing would be expected to vary depending on the perceived magnitude of the predation risk. Moreover, harassment behavior can also serve as a demonstration of social status and to teach juveniles to recognize predators and related behaviors. Therefore, mobbing could also persist even when predation risk is particularly low. To test our hypotheses, we used tawny owl playbacks and a taxidermy mount to elicit the mobbing response in azure-winged magpies throughout the daylight period. To classify mobbing intensity, we created five categories depending on the proximity to the owl model at which the mobbing was performed. The results revealed that mobbing behavior in azure-winged magpies was more intense where predation risk was higher: in the most suitable habitat for the tawny owl, the forest, although considerable levels of mobbing were found in the dehesa and the ecotone, which indicate that mobbing has different purposes. However, we did not find statistically significant differences in mobbing intensity depending on the time of the day. We could not show a daily adjustment of antipredator response, but magpies modulated mobbing depending on the perceived risk linked to the habitat.


Assuntos
Bullying , Passeriformes , Estrigiformes , Animais , Passeriformes/fisiologia , Comportamento Predatório , Ecossistema
17.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470124

RESUMO

Survival and reproduction of endotherms depend on their ability to balance energy and water exchange with their environment, avoiding lethal deficits and maximising gains for growth and reproduction. At high environmental temperatures, diurnal endotherms maintain body temperature (Tb) below lethal limits via physiological and behavioural adjustments. Accurate models of these processes are crucial for predicting effects of climate variability on avifauna. We evaluated the performance of a biophysical model (NicheMapR) for predicting evaporative water loss (EWL), resting metabolic rate (RMR) and Tb at environmental temperatures approaching or exceeding normothermic Tb for three arid-zone birds: southern yellow-billed hornbill (Tockus leucomelas), southern pied babbler (Turdoides bicolor) and southern fiscal (Lanius collaris). We simulated metabolic chamber conditions and compared model outputs with thermal physiology data collected at air temperatures (Tair) between 10 and 50°C. Additionally, we determined the minimum data needed to accurately model diurnal birds' thermoregulatory responses to Tair using sensitivity analyses. Predicted EWL, metabolic rate and Tb corresponded tightly with observed values across Tair, with only minor discrepancies for EWL in two species at Tair≈35°C. Importantly, the model captured responses at Tair=30-40°C, a range spanning threshold values for sublethal fitness costs associated with sustained hot weather in arid-zone birds. Our findings confirm how taxon-specific parameters together with biologically relevant morphological data can accurately model avian thermoregulatory responses to heat. Biophysical models can be used as a non-invasive way to predict species' sensitivity to climate, accounting for organismal (e.g. physiology) and environmental factors (e.g. microclimates).


Assuntos
Temperatura Alta , Passeriformes , Animais , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Passeriformes/fisiologia , Clima Desértico
18.
J Anim Ecol ; 92(9): 1707-1718, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37323075

RESUMO

A major question in behavioural ecology is why behaviour, physiology and morphology are often integrated into syndromes. In great tits, Parus major, for example, explorative males are larger (vs. smaller) and leaner (vs. heavier) compared to less explorative individuals. Unfortunately, considerable debate exists on whether patterns found in specific studies are replicable. This debate calls for study replication among species, populations and sexes. We measured behavioural (exploration), physiological (breathing rate) and morphological traits (body mass, tarsus length, wing length, bill length) in two species (great vs. blue tits Cyanistes caeruleus), two populations (Forstenrieder Park vs. Starnberg) and two sexes (males vs. females). We then tested whether the same pattern of integration characterized all unique combinations of these three biological categories (hereafter called datasets). We used a multi-year repeated measures set-up to estimate among-individual trait correlation matrices for each dataset. We then used structural equation modelling to test for size-dependent behaviour and physiology, size-corrected (i.e. size-independent) behaviour-physiology correlations and size-corrected body mass-dependent behaviour and physiology. Finally, we used meta-analyses to test which structural paths were generally (vs. conditionally) supported (vs. unsupported). We found general and consistent support for size-dependent physiology and size-corrected body mass-dependent physiology across datasets: faster breathers were smaller but heavier for their size. Unexpectedly, condition-dependent behaviour was not supported: explorative birds were neither leaner, nor was this relationship heterogeneous across datasets. All other hypothesized patterns were dataset-specific: the covariance between size and behaviour, and between behaviour and physiology differed in sign between datasets, and both were, on average, not supported. This heterogeneity was not explained by any of our moderators: species, population or sex. The specific pattern of size- and condition-dependent physiology reported for a unique combination of species, population, and sex, thus generally predicted those in others. Patterns of size- or condition-dependent behaviour (i.e. 'personality'), or behaviour-physiology syndromes reported in specific datasets, by contrast, did not. These findings call for studies revealing the ecological background of this variation and highlight the value of study replication to help understand whether patterns of phenotypic integration reported in one study can be generalized.


Assuntos
Passeriformes , Aves Canoras , Masculino , Feminino , Animais , Síndrome , Personalidade , Comportamento Animal/fisiologia , Passeriformes/fisiologia , Aves Canoras/fisiologia
19.
Environ Sci Pollut Res Int ; 30(33): 81226-81235, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316627

RESUMO

Every year, a combination of summer with extreme weather events such as "heatwaves" affects the life of organisms on earth. Previous studies on humans, rodents, and some birds signify the impact of heat stress on their survival and existence. Over the past four decades, the frequency of heatwaves has increased because of global warming. Therefore, we performed a longitudinal study on a resident bird species, the spotted munia (Lonchura punctulata) by simulating a heatwave-like condition. We were interested in understanding how a Passeriformes native to a sub-tropical country deals with heatwave-like conditions. Initially, the birds were subjected to room temperature (25 ± 2 °C; T1) for 10 days, followed by a simulated heatwave-like condition (42 ± 1 °C; T2) for 7 days and again back to room temperature (25 ± 2 °C; RT1) for the next 7 days. To elucidate how birds cope with simulated heatwave conditions, we examined different behavioral and physiological parameters. We found that although heat stress significantly reduced total activity counts and food intake but, the body mass, blood glucose, and hemoglobin levels remained unaffected by any of the temperature conditions. Furthermore, HSP70 and biochemical markers of liver injuries such as ALP, AST, ALT, bilirubin direct, and bilirubin total were found elevated in response to the simulated heatwave-like condition, whereas uric acid and triglyceride were reduced. Creatinine and total protein levels were unaffected by the heatwave. The post heatwave treatment resulted in a rebound of the behavioral and physiological responses, but the recovered responses were not equivalent to the pre-heatwave levels (T1 conditions). Thus, the present study demonstrates heatwave-associated behavioral and physiological changes in a resident passerine finch which has tremendous physiological flexibility.


Assuntos
Temperatura Alta , Passeriformes , Humanos , Animais , Temperatura , Estudos Longitudinais , Passeriformes/fisiologia , Estações do Ano
20.
Biol Lett ; 19(6): 20230136, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37340810

RESUMO

Theoretical models indicate that the evolution of biparental care depends on how parents behaviourally negotiate their level of care in response to those of their partner and whether sexes and individuals consistently vary in their response (compensatory response). While the compensatory response has been widely investigated empirically, its repeatability has rarely been assessed. In this study, we used a reaction norm approach to investigate the repeatability of the compensatory offspring provisioning of a parent after temporary removal of its partner in the pied flycatcher (Ficedula hypoleuca) across different breeding seasons and partners. We found that only females partially compensated for the short-term removal of the partner and their response was significantly repeatable across years while breeding with different partners. This study highlights the importance of considering among individual differences in negotiation rules to better understand the role of negotiation mechanisms in the evolution of parental care strategies.


Assuntos
Passeriformes , Aves Canoras , Animais , Feminino , Passeriformes/fisiologia , Negociação , Comportamento Sexual Animal , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...